Articles

Per- and Polyfluoroaryl Mono- and Disiloxanes as Transfer Reagents in the Synthesis of **Highly Fluorinated Mono- and Diethers**

Nimesh R. Patel, Jianguo Chen, Robert L. Kirchmeier, and Jean'ne M. Shreeve*

Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343

Received July 12, 1994[®]

In the presence of fluoride ion, per- or polyfluoroaromatic siloxanes $C_6F_5OSi(CH_3)_3$ (1), $(CH_3)_3SiOC_6F_4OSi (CH_3)_3$ (2), 1-fluoro-2,3-bis((trimethylsilyl)oxy)benzene (3), and $(CH_3)_3SiOC(CF_3)_2C_6F_4C(CF_3)_2OSi(CH_3)_3$ (4) are useful transfer reagents for the synthesis of mono- and diethers. Siloxane 1 forms R_fOCF_2Br (5), $(R_fO)_3CF$ $(6), R_{f}OCH_{2}OR_{f} (7), (R_{f}O)_{2}CHCH(OR_{f})_{2} (8), (R_{f}O)_{2}SO (9), (R_{f}O)_{2}CO (10), C_{3}N_{3}(OR_{f})_{3} (11), R_{f}OC(O-10), C_{3}N_{3}(OR_{f})_{3} (11), C_{3}N_{3}(OR$

 $(CF_2)_3C(O)OR_f$ (12), $CF_3SO_2OR_f$ (13), $CF_2C(OR_f)=C(OR_f)CF_2$ (14), and $CF_2C(OR_f)=C(F)CF_2$ (15) $(R_f = C_6F_5)$ with CF₂Br₂, CFBr₃, CH₂Br₂, Br₂CHCHBr₂, SOF₂, COF₂, (CNF)₃, ClC(O)(CF₂)₃C(O)Cl, CF₃SO₂F, 1,2dichlorotetrafluorocyclobutene, and perfluorocyclobutene, respectively. Compound 5 is readily converted to C_6F_5 - $OCF_2Si(CH_3)_3$ (16) with hexaethylphosphorous triamide and $(CH_3)_3SiCl$ in benzonitrile. With C_6F_5CN , $CF_3C_6F_5$, C₅F₅N, CH₃I, perfluorocyclobutene, CF₃C(O)Cl and (CNF)₃, 2 forms diethers p-CNC₆F₄OC₆F₄OC₆F₄CN-p (17), p-CF₃C₆F₄OC₆F₄OC₆F₄CF₃-p (18), NC₅F₄OC₆F₄OC₅F₄N (19), CH₃OC₆F₄OCH₃ (20), and C₂F₅C(O)OC₆F₄OC- $(O)C_2F_5$ (21), respectively. Reaction of 3 with 1,2-diiodotetrafluorobenzene in diglyme gives 1,4,8-trifluoro-2,3-diiodophenozine (22). Disiloxane 4 with C₆H₅CH₂Br, CH₃I, C₆F₅CH₂Br, and COF₂ results in C₆H₅CH₂OC-(CF₃)₂C₆F₄C(CF₃)₂OCH₂C₆H₅ (**23**), CH₃OC(CF₃)₂C₆F₄C(CF₃)₂OCH₃ (**24**), C₆F₅CH₂OC(CF₃)₂C₆F₄C(CF₃)₂OCH₂C₆F₅

(25), and $\dot{C}(O)OC(CF_3)_2C_6F_4C(CF_3)_2OC(O)OC(CF_3)_2C_6F_4C(CF_3)_2O$ (26), respectively. These materials are thermally and hydrolytically stable and are formed in high yields.

Introduction

The utilization of silvl ethers as transfer reagents in the syntheses of polyfluorinated compounds has provided an exciting new route to a variety of heretofore difficultly accessible or unknown compounds.¹⁻⁷ Reactions that involve cleavage of the silicon-oxygen bond are not as common as the large number of reactions which require breaking of other siliconelement bonds.9 Although in some cases extreme reaction conditions¹⁰ or highly reactive reagents¹¹ are required, very often the silicon-oxygen bond is broken under mild conditions, e.g., with compounds containing P-F,¹² S-F,¹³ M-F,¹⁴⁻¹⁶ and $C-F^7$ bonds. In these cases advantage is taken of the formation

- (1) Farnham, W. B. In Synthetic Fluorine Chemistry; Olah, G. A., Chambers, R. D., Prakash, G. K. S., Eds.; John Wiley & Sons, Inc.: New York, 1992; Chapter 11 and references therein.
- (2)Zhang, Y.-F.; Kirchmeier, R. L.; Shreeve, J. M. J. Fluorine Chem. 1994, 68, 267
- (3) Patel, N. R.; Chen, J.; Zhang, Y.-F.; Kirchmeier, R. L.; Shreeve, J. M. Inorg. Chem. 1994, 33, 5463.
- (4) Elias, A. J.; Kirchmeier, R. L.; Shreeve, J. M. Inorg. Chem. 1994, 33, 2727
- (5) Elias, A. J.; Hope, H.; Kirchmeier, R. L.; Shreeve, J. M. Inorg. Chem. 1994, 33, 415 and references therein.
- (6) Guo, C.-Y.; Elias, A. J.; Kirchmeier, R. L.; Shreeve, J. M. Manuscript in preparation.
- (7) Farnham, W. M.; Roe, D. C.; Dixon, D. A.; Calabrase, J. C. J. Am. Chem. Soc. 1990, 112, 7707.
- (8) Fujita, M.; Hiyama, T. J. Am. Chem. Soc. 1985, 107, 4085. Fujita, M.; Obayashi, J.; Hiyama, T. Tetrahedron 1988, 44, 4135.
- Weber, W. P. Silicon Reagents in Organic Synthesis; Springer-Verlag: New York, 1983.
- (10) Mascony, J. J.; MacDiarmid, A. G. Chem. Commun. 1965, 307.
 (11) Crans, C. D.; Felty, R. A.; Anderson, O. P.; Miller, M. M. Inorg.
- Chem. 1993, 32, 247.

of the very strong silicon-fluorine bond when R₃SiF is the nonether product that forms. The formation of a silicon-fluorine bond (\sim 142 kcal/mol)⁹ in the volatile byproducts (trimethylsilyl fluoride) of these reactions is the driving force for the highyield formation of ethers under mild reaction conditions.

Earlier we reported the synthesis of acyclic mono- and disiloxane derivatives of various alcohols and their reactions with a number of halogenated compounds to prepare new cyclic and acyclic polyfluoro- and perfluoroethers.³ In this work, we report the reactions of three previously synthesized perfluoroaromatic mono- and disiloxanes plus a new polyfluorodisiloxane. Very little reaction chemistry has been reported of the parent alcohols. If studied, it is usually through the use of the alkali salts. Although this method is widely used, these metal alkoxides are only moderately stable and hydrolytically unstable which limits their use. The siloxanes are very stable and can be stored at ambient temperature for many months without decomposition. The reactions are accomplished in the presence of a fluoride ion catalyst with a variety of per- and polyhalogenated compounds to form the respective ethers in high yields.

- (15) Handy, L. B. J. Fluorine Chem. 1976, 6, 641.
- Singer, R. J.; Eisenhut, M.; Schmutzler, R. J. Fluorine Chem. 1971/ (16) 72, 1, 193.

[®] Abstract published in Advance ACS Abstracts, December 1, 1994.

^{(12) (}a) Peake, S. C.; Schmutzler, R. Chem. Commun. 1968, 665. (b) Peake, S. C.; Field, M.; Hewson, M. J. C.; Schmutzler, R. Inorg. Chem. 1971, 10, 2372. (c) Koop, H.; Schmutzler, R. J. Fluorine Chem. 1971/72, 1, 252. (d) Riess, J. G.; Robert, D. U. Bull. Soc. Chim. Fr. 1975, 3, 425. (e) Poulin, D. D.; Demay, C.; Riess, J. G. Inorg. Chem. 1977, 16, 2278. (f) Jeanneaux, F.; Riess, J. G. Tetrahedron Lett. 1978, 48, 4845.

⁽¹³⁾ Ykman, P.; Hall, H. K. J. Organomet. Chem. 1976, 116, 153 (14) Walker, D. W.; Winfield, J. M. J. Fluorine Chem. 1971/72, 1, 493.

Scheme 1

Results and Discussion

Н

The siloxanes $C_6F_5OSi(CH_3)_3$ (1),¹⁷ (CH₃)₃SiOC₆F₄OSi(CH₃)₃ (2),¹⁸ and FC₆H₃[OSi(CH₃)₃]₂ (3) are prepared by refluxing the alcohols pentafluorophenol, 2,3,5,6-tetrafluorophenol, and 3-fluorocatechol with hexamethyldisilizane and a small amount of saccharin^{2,5,13,18} at 80 °C.

$$C_{6}F_{5}OH \longrightarrow C_{6}F_{5}OSi(CH_{3})_{3}$$

$$1$$

$$IOC_{6}F_{4}OH + [(CH_{3})_{3}Si]_{2}NH \longrightarrow (CH_{3})SiOC_{6}F_{4}OSi(CH_{3})_{3}$$

$$2$$

$$F \longrightarrow OH \longrightarrow F \longrightarrow OSi(CH_{3})_{3}$$

$$OSi(CH_{3})_{3}$$

3

Small amounts of CsF catalyze the reactions of 1 with CF2-Br₂, CFBr₃, CH₂Br₂, Br₂CHCHBr₂, SOF₂, COF₂, (CNF)₃, ClC(O)(CF₂)₃COCl, and CF₃SO₂F to form the respective perand polyfluorinated ethers C₆F₅OCF₂Br (5), (C₆F₅O)₃CF (6), C₆F₅OCH₂OC₆F₅(7), (C₆F₅O)₂CHCH(OC₆F₅)₂ (8), (C₆F₅O)₂SO (9), $(C_6F_5O)_2CO$ (10),¹⁹ $C_3N_3(OC_6F_5)_3$ (11), $C_6F_5OC(O)_{-1}$ $(CF_2)_3C(0)OC_6F_5$ (12), and $CF_3SO_2OC_6F_5$ (13).²⁰ The earlier synthesis of 10 and 13 was realized by reactions of KOC₆F₅ with COF₂ and CF₃SO₂F, the advantage of our method being the ease of handling the precursor siloxane 1. All of the products are stable liquids and are formed in 50-75% yield. It is interesting to compare the relative nucleophilicities of 1 and CF₃CH₂OSi(CH₃)₃ in reaction with CFBr₃, where under identical conditions (C₆F₅O)₃CF and C(OCH₂CF₃)₄, respectively, form.³ It is assumed that 1 is slightly less nucleophilic, but steric considerations cannot be ruled out entirely. Both siloxanes produce analogous products with each of the other electrophiles. With 1,2-dichlorotetrafluorocyclobutene in the presence of

excess CsF, 1 reacts to form $CF_2C(OC_6F_5) = C(OC_6F_5)CF_2$ (14)

and $CF_2C(OC_6F_5)=C(F)CF_2$ (15). When perfluorocyclobutene is mixed with 1 in a ratio of 1:2 in the presence of a catalytic amount of CsF, only a single product 14 is obtained. In every case, $(CH_3)_3SiF$ is found as a volatile product.

(20) Desmarteau, D. D.; Falardeau, E. K. J. Chem. Eng. Data 1970, 21, 386. Reaction of $C_6F_5OCF_2Br$ (5) with hexaethylphosphorous triamide and chlorotrimethylsilane in benzonitrile as solvent gives the stable silane $C_6F_5OCF_2Si(CH_3)_3$ (16).²¹ Studies on the reaction chemistry of this new volatile material are underway.

Disiloxane $(CH_3)_3SiOC_6F_4OSi(CH_3)_3$ (2) can be reacted smoothly with C_6F_5CN , $C_6F_5CF_3$, C_5F_5N , CH_3I , and C_2F_5C -(O)Cl in acetonitrile, THF, or diglyme in the presence of a trace of CsF to form a family of solid perfluoroaromatic diethers 17-21 (Scheme 1). Each of these materials melts cleanly without decomposition.

When disiloxane **3** is treated with 1,2-diiodotetrafluorobenzene at 70 °C, a partially fluorinated tricyclic diether results. This white crystalline material is extracted in high yield from the reaction mixture with diethyl ether.

The synthesis of $(CH_3)_3SiOC(CF_3)_2C_6F_4C(CF_3)_2OSi(CH_3)_3$ (4)²² is accomplished by first lithiating tetrafluorobenzene with *n*-butyllithium and then by reaction of the dilithium salt with hexafluoroacetone and chlorotrimethylsilane,

$$\operatorname{LiC}_{6}F_{4}\operatorname{Li} + \operatorname{CF}_{3}\operatorname{C}(O)\operatorname{CF}_{3} + (\operatorname{CH}_{3})_{3}\operatorname{SiCl} \xrightarrow{-78 \text{ to } 25 \, ^{\circ}\operatorname{C}} (\operatorname{CH}_{3})_{3}\operatorname{SiOC}(\operatorname{CF}_{3})_{2}\operatorname{C}_{6}F_{4}\operatorname{C}(\operatorname{CF}_{3})_{2}\operatorname{OSi}(\operatorname{CH}_{3})_{3}$$

$$4$$

Reactions of 4 with several electrophiles in the presence of CsF as catalyst and diglyme as solvent give very high yields of diether derivatives of 1,4-bis(hexafluoroisopropyl)tetrafluorobenzene, *viz*.

$$4 + R_{f}X \xrightarrow{70 \circ C} R_{f}OC(CF_{3})_{2}C_{6}F_{4}C(CF_{3})_{2}OR_{f}$$

 $R_f = C_6 H_5 CH_2$ (23), CH_3 (24), $C_6 F_5 CH_2$ (25); X = Br or I

⁽¹⁷⁾ Oliver, A. J.; Graham, W. A. G. J. Organomet. Chem. 1969, 19, 17.

⁽¹⁸⁾ Bruynes, C. A.; Jurriens, T. K. J. Org. Chem. 1982, 47, 3966.
(19) DesMarteau, D. D.; Falardeau, E. R. J. Fluorine Chem. 1976, 7, 409.

 ⁽¹⁹⁾ DesMarteau, D. D.; Falardeau, E. R. J. Fluorine Chem. 1976, 7, 409.
 (20) DesMarteau, D. D.; Falardeau, E. R. J. Chem. Eng. Data 1976, 21,

⁽²¹⁾ Ruppert, I.; Schlich, K.; Volbach, W. Tetrahedron Lett. 1984, 25, 2195.

⁽²²⁾ Tamborski, C.; Burton, W. H.; Breed, L. W. J. Org. Chem. 1966, 31, 4229.

$$4 + COF_2 \xrightarrow{25 \circ C}$$

 $\dot{C}(O)OC(CF_3)_2C_6F_4C(CF_3)_2OC(O)OC(CF_3)_2C_6F_4C(CF_3)_2O'$ 26

Compounds 23-25 are purified by recrystallization from heptane and are stable to temperatures above their melting points. While 26 is also stable well beyond its melting point, it is impossible to identify any solvent in which it is soluble. To date attempts to derivatize 26 have resulted in complete decomposition of the molecule. Mass spectral and elemental analysis support the proposed structure which is similar to those reported earlier.^{1,23} Our work continues toward tailoring the structures of these mono- and diethers in order to ensure appropriate properties for a variety of applications where high temperature and hydrolytic stability and long liquid ranges are required.

Experimental Section

Materials. C₆F₅OH, HOC₆F₄OH, CF₃C(O)CF₃, C₆F₅CN, CF₃C₆F₅, C₅F₅N, C₂F₅COCl, C₆F₅CH₂Br, CF₂Br₂, COF₂, ClCO(CF₂)₃COCl, 1,2dichlorotetrafluorocyclobutene and perfluorocyclobutene (PCR), *n*-BuLi, 3-fluorocatechol, CH₃I, C₆H₅CH₂Br, CFBr₃, CsF, Br₂CHCHBr₂, hexamethyldisilazane, hexaethylphosphorous triamide, chlorotrimethylsilane, benzonitrile (Aldrich), CH₂Br₂ (Eastman), CF₃SO₂F (gift from 3M Co.), and (CNF)₃ (Alfa) are used as received. SOF₂²⁴ and C₆F₅(CF₃)₂COH²² are prepared by the literature methods.

General Procedures. A conventional vacuum system, comprised of a Pyrex glass vacuum line equipped with Heise Bourdon tube and Televac thermocouple gauges, is used to handle gases and volatile liquids. Reactions are performed in thick-walled 100-mL roundbottomed flasks with Teflon stopcocks. Products are separated and purified by distillation or extraction with ether followed by recrystallization. Infrared spectra are recorded on a Perkin-Elmer 1710 FTIR spectrometer equipped with an IBM PS-2 data station by using KBr plates for neat samples or with a 10 cm gas cell equipped with KBr disks. ¹H and ¹⁹F NMR spectra are obtained with a Bruker AC200 Fourier transform NMR spectrometer by using CDCl₃ or CD₃CN as solvent and Me₄Si and CCl₃F as references. Mass spectra are obtained with a VG 7070HS GC/MS by using electron impact or chemical ionization techniques. Elemental analyses are performed by Beller Mikroanalytisches Laboratorium, Göttingen, Germany.

Preparation of Siloxanes 1-3. Siloxanes **1-3** are prepared by reaction of C_6F_5OH , HOC_6F_4OH , or 3-fluorocatechol (25 mmol) with $[(CH_3)_3Si]_2NH$ (30–60 mmol) in a 100-mL round-bottomed flask fitted with a reflux condenser. A small amount of sodium saccharin is added as catalyst to drive the reaction to completion.¹⁸ After the initial evolution of ammonia subsides, the mixture is heated to 80 °C and maintained at that temperature for 8–10 h. Upon vacuum distillation, the siloxanes are obtained as colorless air stable liquids.

Properties of C₆F₅OSi(CH₃)₃ (1).¹⁷ Infrared and proton NMR spectral data compared well with the literature. NMR: ¹⁹F, δ –158.7 (*o*-F, 2F, m), -165.1 (*m*-F, 2F, m), -167.5 (*p*-F, 1F, m).

Properties of $(CH_3)_3$ **SiOC**₆*F*₄**OSi** $(CH_3)_3$ (2).¹⁸ Spectral data are as follows. IR (neat): 2957 s, 2899 m, 1510 s, 1412 w, 1315 m, 1256 s, 1182 s, 1056 s, 988 s, 935 s, 885 m, 846 s, 757 m, 687 m, 619 m cm⁻¹. NMR: ¹⁹F, δ –160.3 (4F, s); ¹H, δ 0.26 (18H, s). CI MS [*m/e* (species) intensity]: 327 (M⁺ + 1) 3.7; 326 (M⁺) 12.6; 257 (M⁺ - CF - 2F) 5; 236 (M⁺ - OSi(CH₃)₃ - H) 1.2; 219 (M⁺ - OSi(CH₃)₃ - F + 1) 3.7; 184 (M⁺ - Si(CH₃)₃ - CF - 2F) 6.5; 164 (C₆F₄O⁺) 7.5; 149 (C₆F₄⁺ + 1) 20.5; 148 (C₆F₄⁺) 100. Anal. Calcd for C₁₂H₁₈F₄O₂Si₂: C, 44.17; F, 23.31; H, 5.52. Found: C, 44.43; F, 23.5; H, 5.7.

Properties of 1-Fluoro-2,3-bis((trimethylsilyl)oxy)benzene (3). Spectral data are as follows. IR (neat): 2962 s, 2903 m, 1606 s, 1583 s, 1505 vs, 1471 m, 1412 m, 1306 s, 1254 vs, 1234 s, 1156 m, 1065 s, 1035 vs, 916 s, 844 vs, 800 m, 780 s, 760 s, 729 s, 716 m cm⁻¹.

NMR: ¹⁹F, δ -130.4 (CF, s); ¹H, δ 6.6 (aromatic CH, m), 0.24 (CH₃, s). CI MS [*m/e* (species) intensity]: 274 (M⁺ + 2) 2.7; 273 (M⁺ + 1) 12.4; 272 (M⁺) 44.8; 257 (M⁺ - CH₃) 7.1; 241 (M⁺ - CF) 5.3; 183 (M⁺ - OSi(CH₃)₃) 2.6; 179 (M⁺ - Si(CH₃)₃) - HF) 2.5; 165 (M⁺ -Si(CH₃)₃) - F - CH₃) 32.4; 151 (M⁺ - OSi(CH₃)₃) - F - CH) 5; 137 (M⁺ - OSi(CH₃)₃) - CF - CH₃) 2.8; 73 (Si(CH₃)₃)⁺) 100.

General Procedure for the Preparation of Ethers 5-17. In a typical reaction, 5 mL of acetonitrile, a catalytic amount of CsF, and siloxane 1-3 (6–10 mmol) are combined in a 100-mL round-bottomed Pyrex flask equipped with a Teflon stopcock. The mixture is cooled to -196 °C, and the vessel is evacuated. From 2–5 mmol of substrate (CF₂Br₂, CFBr₃, CH₂Br₂, Br₂CHCHBr₂, SOF₂, COF₂, (CNF)₃, ClCO-(CF₂)₃COCl, CF₃SO₂F, 1,2-dichlorocyclobutene, or perfluorocyclobutene) is then condensed into the flask. The flask is warmed slowly to 25 °C, and the mixture is stirred for 10–12 h at 60–70 °C. The products are separated by low-temperature distillation or by extracting the residue with diethyl ether. Yields of the products 5-17 range from 50 to 75%.

Properties of C₆F₅OCF₂Br (5). This compound is retained in a trap at -30 °C. Spectral data are as follows. IR (neat): 1528 s, 1218 m, 1142 s, 1081 m, 1049 m, 1003 m, 720 m cm⁻¹. NMR: ¹⁹F, δ -19.2 (CF₂, t, ⁵J_{F-F} = 9.8 Hz), -149.6 (*o*-F, 2F, m), -154.3 (*p*-F, 1F, m), -160.8 (*m*-F, 2F, m). CI MS [*m/e* (species) intensity]: 314/312 (M⁺) 43.3/42.2; 295/293 (M⁺ - F) 30.8/33.5; 233 (M⁺ - Br) 100. Anal. Calcd for C₇F₇BrO: C, 26.92; F, 42.62. Found: C, 25.9; F, 43.2.

Properties of $(C_6F_5O)_3CF$ (6). This compound melts at 98 °C. Spectral data are as follows. IR (KBr disk): 1649 m, 1521 s, 1321 m, 1240 w, 1123 s, 1039 s, 998 s, 833 w, 726 m, 655 m cm⁻¹. NMR: ¹⁹F, δ -15.1 (CF, t, ⁵*J*_{F-F} = 15.0 Hz), -150.6 (*o*-F, 6F, m), -155.9 (*p*-F, 3F, m), -162.3 (*m*-F, 6F, m). CI MS [*m*/*e* (species) intensity]: 561 (M⁺ - F) 3.9; 456 (M⁺ - C₄F₄) 2.7; 397 (M⁺ - OC₆F₅) 60.6; 378 (M⁺ - OC₆F₅ - F) 3.6; 359 (M⁺ - OC₆F₅ - 2F) 3.5; 331 (C₉F₁₀O₂⁺ + 1) 1.9; 312 (C₉F₉O₂⁺ + 1) 1; 293 (C₉F₈O₂⁺ + 1) 52.4; 277 (C₈F₇O₃⁺) 1.9; 262 (C₈F₇O₂⁺ + 1) 0.5; 230 (C₇F₆O₂⁺) 1.4; 214 (C₇F₆O⁺) 1.5; 184 (C₆F₅O⁺ + 1) 100. Anal. Calcd for C₁₉F₁₆O₃: C, 39.31; F, 52.4. Found: C, 40.00; F, 52.6.

Properties of C₆F₅OCH₂OC₆F₅ (7). This compound melts at 48 °C. Spectral data are as follows. IR (KBr disk): 2961 m, 1517 s, 1412 m, 1277 s, 1178 s, 1160 s, 1122 s, 1051 vs, 997 vs, 932 vs, 785 w, 745 w cm⁻¹. NMR: ¹⁹F, δ -156.2 (*o*-F, 4F, m), -160.8 (*p*-F, 2F, m), -162.5 (*m*-F, 4F, m); ¹H, δ 5.76 (CH₂, s). CI MS [*m/e* (species) intensity]: 380 (M⁺) 8.3; 197 (M⁺ - OC₆F₅) 100. Anal. Calcd for C₁₃H₂F₁₀O₂: C, 41.05; F, 50.0. Found: C, 40.9; F, 50.5.

Properties of $(C_6F_5O)_2CHCH(OC_6F_5)_2$ (8). This compound melts at 120 °C. Spectral data are as follows. IR (KBr disk): 1526 vs, 1501 vs, 1468 m, 1365 s, 1289 s, 1244 m, 1149 s, 1134 s, 998 s, 978 vs, 714 w, 608 w cm⁻¹. NMR: ¹⁹F, δ -164.7 (o-F, 8F, m), -168.4 (m-F, 8F, m), -178.2 (p-F, 4F, m); ¹H, $\delta 4.8 (CH, s)$. CI MS [*m/e* (species) intensity]: 738 (M^+ – HF) 3.5; 630 (M^+ – 2HF – 2F – CF₂) 1.8; $603 (M^+ - C_5F_5) 1.4$; 575 $(M^+ - OC_6F_5) 1.4$; 572 $(M^+ - C_6F_5 - F)$ 1; 553 ($M^+ - C_6F_5 - 2F$) 2.4; 541 ($M^+ - C_6F_5 - CF_2$) 1.4; 489 (M^+ $-C_6F_5 - 2HF - 2CF$) 2.6; 451 (M⁺ - OC₆F₅ - C₄F₄) 5.2; 450 (M⁺ $-C_{6}F_{5}OH - C_{4}F_{4}$) 50.1; 440 (M⁺ - C₆F₅ - 3CF - HF - 2F) 13.9; 436 $(M^+ - C_6F_5 - C_5F_5)$ 2.9; 420 $(M^+ - OC_6F_5 - C_5F_5)$ 76.0; 413 $(M^+ - OC_6F_5 - C_4F_4 - 2F)$ 6; 378 $(C_{13}F_{10}O_2^+)$ 1.1; 329 $(C_{12}F_8O_2^+ + C_8O_8^-)$ 1) 3.4; 298 ($C_{11}F_7O_2^+ + 1$) 12.8; 290 ($C_{12}F_6O_2^+$) 11; 285 ($C_{10}F_7O_2^+$) 34.6; 225 ($C_8F_5O_2H_2^+$) 3.9; 216 ($C_9F_4O_2^+$) 4; 209 ($C_8F_5H_2O^+ + 1$) 2.6; 207 ($C_8F_5O^+$) 2.6; 197 ($C_7F_5H_2O^+$) 4.6; 195 ($C_7F_5O^+$) 2.3; 183 $(C_6F_5O^+)$ 100. Anal. Calcd for $C_{26}H_2F_{20}O_4$: C, 41.17; F, 50.13. Found: C, 41.50; F, 50.78.

Properties of (C_6F_5O)₂**SO** (9). This compound melts with decomposition at 95 °C. Spectral data obtained are as follows. IR (KBr disk): 1520 vs, 1480 s, 1385 m, 1315 m, 1190 m, 1029 s, 999 s, 834 m, 739 m, 690 m cm⁻¹. NMR: ¹⁹F, δ –157.5 (*o*-F, 4F, m), -163.2 (*m*- F, 4F, m), -165.0 (*p*-F, 2F, m). CI MS [*m*/*e* (species) intensity]: 414 (M⁺) 1.8; 395 (M⁺ - F) 1.2; 358 (M⁺ - 3F + 1) 2.7; 296 (M⁺ - C₂F₅ + 1) 1.2; 291 (M⁺ - C₄F₄ + 1) 1.2; 272 (M⁺ - C₄F₅ + 1) 2.7; 253 (C₈F₄SO₃⁺ + 1) 3.5; 241 (C₇F₄SO₃⁺ + 1) 2.8; 231 (M⁺ - OC₆F₅) 1.2; 224 (C₇F₄SO₂⁺) 1.2; 170 (C₆F₄SO₃⁺ + 1) 1.2; 200 (C₅F₄SO₂⁺) 3.7; 197 (C₆F₄SO⁺ + 1) 3.5; 196 (C₆F₄SO⁺) 1.9; 184 (C₆F₅O⁺)

⁽²³⁾ Guo, C.-Y.; Kirchmeier, R. L.; Shreeve, J. M. J. Am. Chem. Soc. 1991, 113, 9000.

⁽²⁴⁾ Tullock, C. W.; Coffman, D. D. J. Org. Chem. 1960, 25, 2016.

+ 1) 100. Anal. Calcd for $C_{12}F_{10}O_3S\colon$ C, 34.78; F, 45.89. Found: C, 35.23; F, 46.16.

Properties of $(C_6F_5O)_2CO$ (10).¹⁹ This compound melts at 50 °C. Infrared and mass spectral data compare favorably with the literature. Previously unreported spectral data are as follows. NMR: ¹⁹F, -166.7 (*o*-F, 4F, m), -169.9 (*m*-F, 4F, m), -183.7 (*p*-F, 2F, m). CI MS [*m/e* (species) intensity]: 394 (M⁺) 7; 375 (M⁺ - F) 5.5.

Properties of $C_3N_3(OC_6F_5)_3$ (11). Spectral data are as follows. IR (KBr disk): 1612 s, 1576 m, 1520 s, 1480 m, 1441 w, 1392 s, 1305 s, 1176 s, 1160 s, 1096 s, 998 s, 960 m, 810 m cm⁻¹. NMR: ¹⁹F, δ -153.6 (*o*-F, 6F, m), -157.7 (*p*-F, 3F, m), -163.0 (*m*-F, 6F, m). CI MS [*m/e* (species) intensity]: 628 (M⁺ + 1) 19.4; 478 (M⁺ - C₃F₆ + 1) 4.4; 465 (M⁺ - C₄F₆) 4.4; 445 (M⁺ - OC₆F₅ + 1) 7.1; 444 (M⁺ - OC₆F₅) 31.6; 418 (M⁺ - OC₆F₅ - CN) 3.5; 374 (C₁₃F₉NO₂⁺ + 1) 5.1; 311 (C₁₁F₇NO₂⁺) 7.6; 295 (C₁₀F₆N₂O₂⁺ + 1) 2.4.9; 281 (C₁₀F₆NO₂⁺ + 1) 3.7; 280 (C₁₀F₆NO₂⁺) 36; 252 (C₈F₅N₂O₂⁺ + 1) 2.2; 235 (C₈F₅N₂O⁺) 10.3; 223 (C₇F₅N₂O⁺) 5.4; 210 (C₇F₅NO⁺ + 1) 10.4; 209 (C₆F₅OCN⁺) 55.2; 195 (C₆F₅OC⁺) 1.2; 184 (C₆F₅O⁺ + 1) 100.

Properties of C₆F₅OC(O)(CF₂)₃C(O)OC₆F₅ (12). This compound melts at 92–94 °C. Spectral data are as follows. IR (KBr disk): 1718 s, 1684 s, 1527 s, 1501 s, 1469 s, 1387 m, 1283 m, 1166 vs, 1073 m, 996 vs, 884 m, 813 m, 748 w, 714 w cm⁻¹. NMR: ¹⁹F, δ –123.7 (CF₂, 4F, s), -128.6 (CF₂, 2F, s), -168.9 (*o*-F, 4F, m), -172.5 (*m*-F, 4F, m), -182.5 (*p*-F, 2F, m). CI MS [*m*/*e* (species) intensity]: 389 (M⁺ - OC₆F₅) 10.5; 239 (M⁺ - 2C₆F₅ + 1) 60.2; 222 (M⁺ - OC₆F₅ - C₆F₅) 12.7; 195 (C₄F₆O₂⁺ + 1) 8.5; 184 (C₆F₅O⁺ + 1) 100.

Properties of CF₃SO₂OC₆F₅ (13).²⁰ Infrared and NMR spectral data compare favorably with the literature data. CI MS: shows M^+ and M^+ + 15.

Properties of CF₂C(OC₆F₅)=C(OC₆F₅)CF₂ (14). This compound melts at 74 °C. Spectral data are as follows. IR (KBr disk): 1751 s, 1521 s, 1477 s, 1376 s, 1359 s, 1318 s, 1256 w, 1125 s, 1028 s, 1001 s, 946 m, 883 m, 601 w cm⁻¹. NMR: ¹⁹F, δ -116.7 (CF₂, 4F, s), -154.4 (*o***-F, 4F, m), -155.4 (***p***-F, 2F, m), -160.4 (***m***-F, 4F, m). CI MS [***m/e* **(species) intensity]: 491 (M⁺ + 1) 12.3; 490 (M⁺) 73; 471 (M⁺ - F) 45.9; 421 (M⁺ - CF₃) 1.4; 307 (M⁺ - OC₆F₅) 8.6; 279 (C₁₁F₆O₂⁺ + 1) 3.8; 273 (M⁺ - C₆F₅ - CF₂) 5; 257 (M⁺ - OC₆F₅) -CF₂) 40.1; 229 (C₁₀F₄O₂⁺ + 1) 43.7; 195 (C₆F₅OC⁺) 10.9; 184 (C₆F₅O⁺ + 1) 33.5; 183 (C₆F₅O⁺) 26.4; 167 (C₆F₅⁺) 19.8; 155 (C₅F₅⁺) 15.6; 149 (C₆F₄⁺ + 1) 100. Anal. Calcd for C₁₆F₁₄O₂: C, 39.18; F, 54.29. Found: C, 38.89; F, 55.01.**

Properties of CF₂C(OC₆F₅)=C(F)CF₂ (15). Spectral data are as follows. IR (neat): 1770 s, 1527 vs, 1445 m, 1376 vs, 1316 m, 1268 w, 1157 s, 1137 s, 1026 vs, 1015 s, 1004 s, 983 m, 941 m, 919 m, 874 w, 750 w cm⁻¹. NMR: ¹⁹F, δ -117.4 (CF₂, 2F, m), -118.9 (CF₂, 2F, m), -132.3 (CF, 1F, m), -154.2 (*o*-F, 2F, m), -155.0 (*p*-F, 1F, m), -160.0 (*m*-CF, 2F, m). CI MS [*m/e* (species) intensity]: 326 (M⁺) 14.8; 307 (M⁺ - F) 6.9; 231 (C₁₀F₅O⁺) 4.1; 219 (C₉F₅O⁺) 3; 184 (C₆F₅O⁺ + 1) 100.

Preparation and Properties of C₆F₅OCF₂Si(CH₃)₃ (16). In a 100mL round-bottomed flask equipped with a Teflon stopcock are combined C₆F₅OCF₂Br (5 mmol), chlorotrimethylsilane (5 mmol), hexaethylphosphorous triamide (5 mmol), and 5 mL of benzonitrile. The flask is kept at -196 °C, and the air is evacuated. It is allowed to warm slowly to 25 °C and the mixture is stirred for 12-14 h. The product 16 is subsequently isolated in about 55% yield in a trap cooled at -30 °C via low temperature distillation. Spectral data are as follows. IR (neat): 2970 m, 1520 vs, 1258 m, 1206 s, 1041 m, 1009 s, 975 m, 927 w, 854 s, 759 s cm⁻¹. NMR: ¹⁹F, δ -75.93 (CF₂, t, ⁵J_{F-F} = 9.97 Hz), -151.4 (o-F, 2F, m), -158.4 (p-F, 1F, m), -163.1 (m-F, 2F, m); ¹H, δ 0.29 (CH₃Si, s). CI MS [*m/e* (species) intensity]: 287 (M⁺ -F) 4.2; 256 (M⁺ - CF₂) 13.2; 234 (M⁺ - (CH₃)₃Si + 1) 1.2; 215 (M⁺ - $(CH_3)_3SiF + 1$ 1.0; 184 $(C_6F_5O^+ + 1)$ 2.8; 167 $(C_6F_5^+)$ 4.7; 148 $(C_6F_4^+)$ 1.1; 123 $(M^+ - OC_6F_5)$ 5.4; 118 $(C_5F_3^+ + 1)$ 18.3; 117 $(C_5F_3^+)$ 2; 105 (C₄F₃⁺) 7.6; 104 (C₄H₉SiF⁺) 88.2; 103 (C₄H₈SiF⁺) 100.

Preparation of Ethers 17-21. Siloxane 2 (8–10 mmol), 5 mL of actonitrile or THF or diglyme, and a catalytic amount of CsF are combined in a 100-mL round-bottomed Pyrex flask equipped with a Teflon stopcock. The mixture is cooled at -196 °C, and the vessel is evacuated. A 5–10 mmol amount of substrate (CNC₆F₅, CF₃C₆F₅, C₅F₅N, CH₃I, perfluorocyclobutene, or C₂F₅COCl) is then added to the

flask. The flask is allowed to warm to 25 °C, and the mixture is stirred for 10-12 h at 60-70 °C. The products are separated by trap-to-trap distillation or by extracting the residue with diethyl ether. Product

yields range from 50 to 70%. **Properties of** *p***-CNC**₆**F**₄**OC**₆**F**₄**OC**₆**F**₄**CN**-*p* (17). This compound melts at 154–156 °C. Spectral data are as follows. IR (KBr disk): 2250 m, 1652 m, 1504 vs, 1439 m, 1322 m, 1304 m, 1127 s, 994 vs, 921 m, 652 m cm⁻¹. NMR: ¹⁹F, δ –133.16 (*o*-F to CN, 4F, m), –154.3 (*m*-F to CN, 4F, m), –155.9 (OC₆F₄O, 4F, m). CI MS [*m*/*e* (species) intensity]: 557 (M⁺ + 29) 5.1; 543 (M⁺ + 15) 20.7; 530 (M⁺ + 2) 20.6; 529 (M⁺ + 1) 100; 528 (M⁺) 94.9.

Properties of *p***-CF**₃**C**₆**F**₄**OC**₆**F**₄**OC**₆**F**₄**CF**₃-*p* (18). This compound melts at 110 °C. Spectral data are as follows. IR (KBr disk): 1660 m, 1515 vs, 1499 vs, 1427 m, 1402 w, 1351 s, 1228 s, 1192 s, 1163 s, 1112 m, 1087 m, 1017 s, 986 s, 969 s, 877 m, 720 m cm⁻¹. NMR: ¹⁹F, δ -55.8 (CF₃, 6F, m), -141.6 (*o*-F to CF₃, 4F, m), -155.6 (*m*-F to CF₃, 4F, m), -164.2 (OC₆F₄O, 4F, m). EI MS [*m/e* (species) intensity]: 614 (M⁺) 100; 595 (M⁺ - F) 22.5; 545 (M⁺ - CF₃) 1.7; 397 (M⁺ - C₆F₄CF₃) 44.9; 381 (M⁺ - OC₆F₄CF₃) 3.4.

Properties of NC₅**F**₄**OC**₆**F**₄**OC**₅**F**₄**N** (19). This compound melts at 130 °C. Spectral data are as follows. IR (KBr disk): 1646 s, 1505 vs, 1414 m, 1308 s, 1274 m, 1117 m, 1079 vs, 1005 s, 976 s, 954 m, 734 w, 697 m, 645 m, 618 m cm⁻¹. NMR: ¹⁹F, -89.0 (*o*-F to N, 4F, m), -154.2 (*m*-F to N, 4F, m), -156.5 (OC₆F₄O, 4F, m). EI MS [*m/e* (species) intensity]: 480 (M⁺) 100; 461 (M⁺ - F) 3.5; 330 (M⁺ - NC₅F₄) 51.7; 314 (M⁺ - OC₅F₄N) 3.0. Anal. Calcd for C₁₆F₁₂N₂O₂: C, 40.0; F, 47.5. Found: C, 40.8; F, 48.1.

Properties of CH₃OC₆F₄OCH₃ (20). This compound melts at 52 °C. Spectral data are as follows. IR (KBr disk): 2956 m, 2844 w, 1507 vs, 1435 s, 1303 s, 1194 m, 1062 vs, 996 s, 906 s, 705 w cm⁻¹. NMR: ¹⁹F, δ –159.1 (4F, s); ¹H, δ 3.97 (6H, s). CI MS [*m/e* (species) intensity]: 211 (M⁺ + 1) 5.3; 210 (M⁺) 66.5; 195 (M⁺ – CH₃) 100.

Properties of $C_2F_5C(O)OC_6F_4OC(O)C_2F_5$ (21). This compound melts at 162 °C. Spectral data are as follows. IR (KBr disk): 1772 s, 1525 s, 1512 s, 1455 w, 1304 m, 1222 vs, 1161 vs, 1030 s, 999 m, 967 m, 847 w, 783 w, 707 m cm⁻¹. NMR: ¹⁹F, δ -83.4 (CF₃, 6F, s), -122.2 (CF₂, 4F, s), -165.0 (C₆F₄, 4F, s). CI MS [*m/e* (species) intensity]: 474 (M⁺) 2.8; 355 (M⁺ - C₂F₅) 5.8; 311 (M⁺ - C₂F₅CO₂) 3.1; 236 (M⁺ - C₄F₁₀) 8.1; 211 (C₇F₅O₂⁺) 1.9; 192 (C₆F₄CO₂⁺) 4.1; 183 (C₆F₅O⁺) 100. Anal. Calcd for C₁₂F₁₄O₄: C, 30.37; F, 56.11. Found: C, 31.1; F, 55.8.

Preparation and Properties of 1,4,8-Trifluoro-2,3-diiodophenozine (22). In a typical reaction, 5 mL of triglyme, a catalytic amount of CsF, siloxane 3 (5 mmol), and 1,2-diiodotetrafluorobenzene (5 mmol) are combined in a 100-mL round-bottomed flask equipped with Teflon stopcock. The mixture is cooled at -196 °C, and the vessel is evacuated. The flask is warmed to 25 °C, and the mixture is stirred for 10–12 h at 70–75 °C. After the reaction all the volatile compounds are removed and the residue on extraction with ether gives compound 22 in high yield. Spectral data are as follows. IR (KBr): 3093 m, 2980 w, 1623 m, 1583 m, 1500 s, 1469 vs, 1440 s, 1323 m, 1287 m, 1253 m, 1195 s, 1157 s, 1106 m, 1064 s, 1039 s, 869 w, 848 m, 833 s, 811 w, 777 w, 689 m cm⁻¹. NMR: ¹⁹F, δ –106.5 (2F, ortho to iodo, m), –135.3 (1F, CF, m); ¹H, δ 6.8 (aromatic protons, m). CI MS [*m/e* (species) intensity]: 491 (M⁺ + 1) 9.5; 490 (M⁺) 100.

Preparation of (CH₃)₃SiOC(CF₃)₂C₆F₄C(CF₃)₂OSi(CH₃)₃ (4). Into a 100-mL three-necked flask equipped with magnetic stirrer, reflux condenser, and a nitrogen inlet is added 20 mmol of 2,3,5,6tetrafluorobenzene and 15 mL of dry THF. The solution is cooled to -60 °C, and 20 mL of BuLi in hexane is added dropwise under a nitrogen atmosphere. The reaction mixture is stirred at this temperature for 2 h, and 40 mmol of hexafluoroacetone is condensed into the solution. Stirring is continued while the reaction temperature is allowed to raise gradually to 25 °C. The resulting lithium salt is trapped by chlorotrimethylsilane to give the disiloxane in 33% yield, mp 66-68 °C (heptane). Spectral data are as follows. IR (KBr pellet): 2966, w, 1612, m, 1495, m, 1219, s, 1126, s, 1046, s, 983, s, 931, s, 852, s, 764, s, 714, s cm⁻¹. NMR: ¹⁹F, δ -74.3 (12F, s, CF₃), -132.5 (4F, m, Ar-F); ¹H δ 0.18 (SiCH₃) ppm. CI MS [m/e (species) intensity]: 611 $(M^+ - CH_3)$ 5.0, 515 $(M^+ - (CH_3)_3SiF - F)$ 4.2, 487 $(M^+ - (CH_3)_3$ - $SiO - CF_2$) 4.3, 404 ($C_{12}F_{12}O_2^+$) 4.2, 149 ($C_6F_4^+ + 1$) 11.0, 85 (SiF_3^+) 15.8, 81 $(CH_3SiF_2^+)$ 31.1, 77 $(CH_3)_2SiF^+)$ 100.

General Procedure for the Preparation of Compounds 23-25. In a typical procedure, 4.5 mmol of CsF, 3 mmol of 4, 3 mL of diglyme, and 1.5-3 mmol of substrate (C₆H₅CH₂Br, CH₃I, C₆F₅CH₂Br) are added under dry nitrogen atmosphere to a oven-dried 50-mL. Pyrex roundbottomed flask equipped with a magnetic stirrer. The mixture is stirred at 25 °C for 8 h. The product is extracted with 3 × 20 mL of ether. The extract is washed with water several times and dried over MgSO₄. Evaporation of the solvent gives the crude products, which are recrystallized from heptane to yield white crystals.

Properties of C₆H₅CH₂OC(CF₃)₂C₆F₄C(CF₃)₂OCH₂C₆H₅ (23). This compound which melts at 132–134 °C is recrystallized from heptane (96.2% yield). Spectral data are as follows. IR (film): 3079 w, 3072 w, 2966 m, 2908 m, 1473 s, 1428 s, 1397 s, 1290 s , 1236 s, 1169 s, 1133 s, 1023 s, 993 s, 958 s, 781 s, 747 s, 737 s, 725 m cm⁻¹. NMR: ¹⁹F, δ –71.3 (12F, s, CF₃), -132.2 (4F, m); ¹H, δ 7.37 (10H, m, C₆H₅), 4.68 (4H, s, CH₂). CI MS [*m/e* **(species) intensity]: 663 (M⁺ + 1) O.47; 662 (M⁺) 1.9; 536 (M⁺ - C₆H₅CH₂O - F) 2.0; 448 (M⁺ - 2C₆H₅CH₂O) 0.8; 256 (C₆H₅CHOC(CF₃)₂⁺) 1.5; 187 (C₆H₅-CHOC(CF₃)⁺) 1.5; 107 (C₆H₅CH₂O⁺) 49.8; 106 (C₆H₅CHO⁺) 32.5; 105 (C₆H₅CO⁺) 17.4; 91 (C₆H₅CH₂) 100.**

Properties of CH₃OC(CF₃)₂C₆F₄C(CF₃)₂OCH₃ (24). This compound which melts at 110–112 °C is recrystallized from heptane (94.1% yield). Spectral data are as follows. IR (film): 3079 w, 3072 w, 2966 m, 2908 m, 1473 s, 1428 s, 1397 s, 1290 s, 1236 s, 1169 s, 1133 s, 1023 s, 993 s, 958 s, 781 s, 747 s, 737 s, 725 m cm⁻¹. NMR: ¹⁹F, \delta -72.0 (12F, s, CF₃), -133.2 (4F, m); ¹H, \delta 3.55 (6H, s, CH₃). CI MS [*m/e* **(species) intensity]: 511 (M⁺ + 1) 3.0; 510 (M⁺) 24.4; 491 (M⁺ - F) 14.9; 441 (M⁺ - CF₃) 100.**

Properties of $C_6F_5CH_2OC(CF_3)_2C_6F_4C(CF_3)_2OCH_2C_6F_5$ (25). This compound which melts at 158–160 °C is recrystallized from heptane (93.4% yield). Spectral data are as follows. IR (film): 3079 w, 3072 w, 2966 m, 2908 m, 1473 s, 1428 s, 1397 s, 1290 s, 1236 s,

1169 s, 1133 s, 1023 s, 993 s, 958 s, 781 s, 747 s, 737 s, 725 m cm⁻¹. NMR: ¹⁹F, δ -71.4 (12F, s, CF₃), -131.7 (4F, m), -142.1 (4F, m, *o*-F), -151.0 (2F, m, *p*-F), -161.1 (4F, m, *m*-F); ¹H, δ 4.81 (4H, s, CH₂). CI MS [*m/e* (species) intensity]: 843 (M⁺ + 1) 4.3; 842 (M⁺) 14.4; 662 (M⁺ - C₆F₅CH₂ + 1) 1.4; 646 (M⁺ - C₆F₅CH₂O + 1) 5.9; 645 (M⁺ - C₆F₅CH₂O) 16.9; 450 (M⁺ - 2C₆F₅CH₂O + 2) 16.9; 197 (C₆F₅CH₂O⁺) 49.6; 196 (C₆F₅CHO⁺) 23.6; 182 (C₆F₅CH₂⁺ + 1) 56.4; 181 (C₆F₅CH₂⁺) 100.

Preparation and Properties of $\dot{C}(O)OC(CF_3)_2C_6F_4C(CF_3)_2OC$ -

(O)OC(CF₃)₂C₆F₄C(CF₃)₂ \dot{O} (26). This compound is prepared by the same procedure as described above except that substrate COF₂ is introduced into the reaction vessel under vacuum. After the reaction, the mixture is poured into water and the white solid which precipitates is washed several times with distilled water and dried (100% yield). This solid which melts from 200–210 °C does not dissolve in any solvent tried. Spectral data are as follows. IR (film): 1867 w, 1813 s, 1489 s, 1251 s , 1062 s, 1045 s, 1000 s, 962 s, 772 s, 724 s cm⁻¹. CI MS [*m/e* (species) intensity]: 1017 (M⁺ + 1) 1.7; 1016 (M⁺) 0.3; 998 (M⁺ - F + 1) 2.1; 997 (M⁺ - F) 8.4; 973 (M⁺ - CO₂ + 1) 23.2; 953 (M⁺ - CO₂ - F) 27.1; 509 ($^{1}/_2$ M⁺ + 1) 12.2; 489 ($^{1}/_2$ M⁺ - F) 22.7; 465 ($^{1}/_2$ M⁺ - CO₂ + 1) 100. Anal. Calcd for C₂₆F₃₂O₆: C, 30.73; F, 59.8. Found: C, 30.51; F, 59.1.

Acknowledgment. We are grateful to the National Science Foundation (Grants CHE-9310389 and OSR-9350539 (R.L.K. and J.C.)) and the Air Force Office of Scientific Research (Grant 91-0189) for support of this research. We also thank Dr. Gary Knerr for obtaining the mass spectral data.

IC940817R